Un nuevo conectivo lógico-computacional para describir la superposición cuántica

Alejandro Díaz-Caro

Universidad Nacional de Quilmes &

Instituto de Ciencias de la Computación (conicet / uba)

Comunicaciones seguras: Métodos cuánticos y poscuánticos ARSAT

22 y 23 de junio de 2022

Plan

- ▶ ¿Porqué estudiar lenguajes de programación?
- ▶ ¿Y eso qué tiene que ver con lógica?
- Y eso porqué no es suficiente con lógica clásica?
- ▶ ⊙ el conectivo lógico de la superposición cuántica
- ▶ ⊙ en el corazón de los lenguajes de programación cuánticos

Lenguaje	Ventajas	Desventajas
Circuitos	Lenguaje gráficoFácil de visualizarMuy aceptado	 No todo algoritmo cuántico se puede expresar en circuitos De muy bajo nivel (cercano al hardware)

Lenguaje	Ventajas	Desventajas
Circuitos	Lenguaje gráficoFácil de visualizarMuy aceptado	 No todo algoritmo cuántico se puede expresar en circuitos De muy bajo nivel (cercano al hardware)
Pseudocódigo (instrucciones en español)	• Fácil de entender	No es muy formalPuede ser ambiguo

Lenguaje	Ventajas	Desventajas
Circuitos	Lenguaje gráficoFácil de visualizarMuy aceptado	 No todo algoritmo cuántico se puede expresar en circuitos De muy bajo nivel (cercano al hardware)
Pseudocódigo (instrucciones en español)	• Fácil de entender	No es muy formalPuede ser ambiguo
Lenguajes de alto nivel	 Verificable Nos alejamos del hardware Puede dar ideas para nuevos algoritmos 	La mayoría de los algoritmos cuánticos no fueron escritos en esos lenguajes

Lenguaje	Ventajas	Desventajas
Circuitos	Lenguaje gráficoFácil de visualizarMuy aceptado	 No todo algoritmo cuántico se puede expresar en circuitos De muy bajo nivel (cercano al hardware)
Pseudocódigo (instrucciones en español)	• Fácil de entender	No es muy formalPuede ser ambiguo
Lenguajes de alto nivel	 Verificable Nos alejamos del hardware Puede dar ideas para nuevos algoritmos 	 La mayoría de los algoritmos cuánticos no fueron escritos en esos lenguajes
Cálculo lambda	 Formalismo matemático En el "corazón" de los lenguajes de programación funcionales 	No es práctico para programar (sólo para demostrar propiedades fundamentales)

La correspondencia de Curry-Howard-Labmek

Claculo lambda tipado	Teoría de la demostración	Teoría de categorías
Tipos	Proposiciones lógicas	Objetos de una categoría
Programas	Pruebas de proposiciones lógicas	Morfismos de una categoría

La correspondencia de Curry-Howard-Labmek

Claculo lambda tipado	Teoría de la demostración	Teoría de categorías
Tipos	Proposiciones lógicas	Objetos de una categoría
Programas	Pruebas de proposiciones lógicas	Morfismos de una categoría

El programa que toma un argumento y devuelve el mismo tiene tipo $A\Rightarrow A$ para algún tipo A.

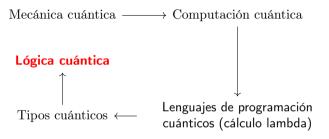
La proposición lógica $A \Rightarrow A$ se prueba asumiendo A para poder derivar A.

$$\frac{A \vdash A}{\vdash A \Rightarrow A}$$

El morfismo identidad va de cualquier objeto A en sí mismo.

$$A \stackrel{id}{\longrightarrow} A$$

Cálculo lambda tipado ⇔ Lógica matemática



El objetivo es definir una lógica cuántica usando métodos de ciencias de la computación

- ► Para poder verificar correctitud de programas
- Para poder verificar correctitud de lenguajes de programación
- Para entender mejor la física

El lambda cálculo no tipado

Introducido en 1936 por Alonzo Church

Motivación: Investigar los *fundamentos de la matemática* (en particular, el concepto de recursión)

El lambda cálculo no tipado

Introducido en 1936 por Alonzo Church

Motivación: Investigar los *fundamentos de la matemática* (en particular, el concepto de recursión)

Dos simplificaciones básicas sobre el concepto de función

► Anonimicidad:

Ejemplo:

se escribe anónimamebte como

$$sqsum(x,y) = x^2 + y^2$$
$$(x,y) \mapsto x^2 + y^2$$

Los nombres de funciones no son necesarios

Un nuevo conectivo lógico-computacional para describir la superposición cuántica

El lambda cálculo no tipado

Introducido en 1936 por Alonzo Church

Motivación: Investigar los *fundamentos de la matemática* (en particular, el concepto de recursión)

Dos simplificaciones básicas sobre el concepto de función

► Anonimicidad:

Ejemplo:

se escribe anónimamebte como

 $sqsum(x,y) = x^2 + y^2$ $(x,y) \mapsto x^2 + y^2$

Los nombres de funciones no son necesarios

Todas las funciones son a una sola variable:

Ejemplo:

Se escribe como

$$(x,y) \mapsto x^2 + y^2$$

 $x \mapsto (y \mapsto x^2 + y^2)$

Una función a dos variables es una función a una variable que devuelve una función a una variable, la cual hace el cálculo

El lambda cálculo no tipado

Lenguaje de términos (una gramática)

- \blacktriangleright Una variable $x \in Vars$ es un término
- ightharpoonup Si t es un término y x una variable, $\lambda x.t$ es un término
- ➤ Si t y r son dos términos, tr es un término

Esos son todos los términos posibles

$$t ::= x \mid \lambda x.t \mid tt$$

 $(x \mapsto t)$

(application)

El lambda cálculo no tipado

Lenguaje de términos (una gramática)

- ightharpoonup Una variable $x \in Vars$ es un término
- ightharpoonup Si t es un término y x una variable, $\lambda x.t$ es un término
- ► Si *t* y *r* son dos términos, *tr* es un término

Esos son todos los términos posibles

$$t ::= x \mid \lambda x.t \mid tt$$

Una regla de reescritura

$$(\lambda x.t)r \longrightarrow [x:=r]t$$

 $(x \mapsto t)$ (application)

El lambda cálculo no tipado

Lenguaje de términos (una gramática)

- ightharpoonup Una variable $x \in Vars$ es un término
- ▶ Si t es un término y x una variable, $\lambda x.t$ es un término
- ► Si *t* y *r* son dos términos, *tr* es un término

Esos son todos los términos posibles

$$t ::= x \mid \lambda x.t \mid tt$$

Una regla de reescritura

$$(\lambda x.t)r \longrightarrow [x:=r]t$$

Ejemplo

$$f(g,x) = g(x)$$
 se escribe $\lambda g.\lambda x.gx$

(application)

El lambda cálculo no tipado

Lenguaje de términos (una gramática)

- ▶ Una variable $x \in Vars$ es un término
- ▶ Si t es un término y x una variable, $\lambda x.t$ es un término
- ▶ Si t y r son dos términos, tr es un término

Esos son todos los términos posibles

$$t ::= x \mid \lambda x.t \mid tt$$

Una regla de reescritura

$$(\lambda x.t)r \longrightarrow [x:=r]t$$

Ejemplo

$$f(g,x) = g(x) \quad \text{se escribe} \quad \lambda g.\lambda x.gx$$

$$f(\mathbf{h},\mathbf{y}) \quad \text{se escribe} \quad (\lambda g.\lambda x.gx)\mathbf{h}\mathbf{y}$$

$$(\underbrace{\lambda g.\lambda x.gx}_{(\lambda x.}) \underbrace{\mathbf{h}}_{\mathbf{r}} \mathbf{y} \longrightarrow (\underbrace{\lambda x.\mathbf{h}x}_{[x:=r]t})\mathbf{y} \longrightarrow \mathbf{h}\mathbf{y}$$

 $(x \mapsto t)$ (application)

Ejemplos

If c Then t Else
$$e = c$$
 t e
 $c = True$
 $c = True$

Ejemplos

If c Then t Else
$$e = c$$
 t e
 $c = \text{True} t$
 $c = \text{True} t$

True =
$$\lambda x. \lambda y. x$$
 $(f(x,y) = x)$
False = $\lambda x. \lambda y. y$ $(f(x,y) = y)$
If c Then t Else $e = c$ t e
$$p \text{ and } s = p \text{ s } p$$

$$p \text{ or } s = p \text{ p s}$$
Ejemplos
If c Then t Else $e = c$ t e
$$c = \underbrace{\text{True}}_{c = False} t$$

$$p \text{ or } s = p \text{ p s}$$

$$p \text{ or } s = p \text{ p s}$$

$$p \text{ or } s = p \text{ p s}$$

$$p \text{ or } s = p \text{ p s}$$

$$p \text{ or } s = p \text{ p s}$$

$$p \text{ or } s = p \text{ p s}$$

$$p \text{ or } s = p \text{ p s}$$

$$p \text{ or } s = p \text{ p s}$$

$$p \text{ or } s = p \text{ p s}$$

$$p \text{ or } s = p \text{ p s}$$

$$p \text{ or } s = p \text{ p s}$$

$$p \text{ or } s = p \text{ p s}$$

$$p \text{ or } s = p \text{ p s}$$

$$p \text{ or } s = p \text{ p s}$$

$$p \text{ or } s = p \text{ p s}$$

Lambda cálculo tipado

Una manera de clasificar términos estáticamente (es decir, sin "ejecutar el programa")

Lambda cálculo tipado

Una manera de clasificar términos estáticamente (es decir, sin "ejecutar el programa")

Términos
$$t ::= x \mid \lambda x^A.t \mid tt$$

Tipos $A ::= \tau \mid A \Rightarrow A$

ightharpoonup au es un tipo básico (como Int o Bool) $ightharpoonup A \Rightarrow A$ es el tipo de las funciones

Lambda cálculo tipado

Una manera de clasificar términos estáticamente (es decir, sin "ejecutar el programa")

Términos
$$t ::= x \mid \lambda x^A.t \mid tt$$

Tipos $A ::= \tau \mid A \Rightarrow A$

ightharpoonup au es un tipo básico (como Int o Bool) $ightharpoonup A \Rightarrow A$ es el tipo de las funciones

```
Contexto: conjunto de variables tipadas \Gamma = x_1 : A_1, \dots, x_n : A_n
            \Gamma \vdash t : A "t tiene tipo A en el contexto \Gamma"
```

8 / 17

Lambda cálculo tipado

Una manera de clasificar términos estáticamente (es decir, sin "ejecutar el programa")

Términos
$$t ::= x \mid \lambda x^A.t \mid tt$$

Tipos $A ::= \tau \mid A \Rightarrow A$

ightharpoonup au es un tipo básico (como Int o Bool) $ightharpoonup A \Rightarrow A$ es el tipo de las funciones

Contexto: conjunto de variables tipadas
$$\Gamma = x_1 : A_1, \dots, x_n : A_n$$

 $\Gamma \vdash t : A$ "t tiene tipo A en el contexto Γ "

Lambda cálculo tipado

Una manera de clasificar términos estáticamente (es decir, sin "ejecutar el programa")

Términos
$$t ::= x \mid \lambda x^A.t \mid tt$$

Tipos $A ::= \tau \mid A \Rightarrow A$

ightharpoonup au es un tipo básico (como Int o Bool) $ightharpoonup A \Rightarrow A$ es el tipo de las funciones

Contexto: conjunto de variables tipadas $\Gamma = x_1 : A_1, \dots, x_n : A_n$ $\Gamma \vdash t : A$ "t tiene tipo A en el contexto Γ "

$$\overline{\Gamma, x : A \vdash x : A}$$
 ax

Lambda cálculo tipado

Una manera de clasificar términos estáticamente (es decir, sin "ejecutar el programa")

Términos
$$t ::= x \mid \lambda x^A.t \mid tt$$

Tipos $A ::= \tau \mid A \Rightarrow A$

ightharpoonup au es un tipo básico (como Int o Bool) $ightharpoonup A \Rightarrow A$ es el tipo de las funciones

Contexto: conjunto de variables tipadas $\Gamma = x_1 : A_1, \dots, x_n : A_n$ $\Gamma \vdash t : A$ "t tiene tipo A en el contexto Γ "

$$\frac{\Gamma, x : A \vdash x : A}{\Gamma, x : A \vdash x : A} \Rightarrow_{I} \frac{\Gamma, x : A \vdash t : B}{\Gamma \vdash \lambda x^{A}.t : A \Rightarrow B} \Rightarrow_{I}$$

Lambda cálculo tipado

Una manera de clasificar términos estáticamente (es decir, sin "ejecutar el programa")

Términos
$$t ::= x \mid \lambda x^A.t \mid tt$$

Tipos $A ::= \tau \mid A \Rightarrow A$

ightharpoonup au es un tipo básico (como Int o Bool) $ightharpoonup A \Rightarrow A$ es el tipo de las funciones

Contexto: conjunto de variables tipadas $\Gamma = x_1 : A_1, \dots, x_n : A_n$ $\Gamma \vdash t : A$ "t tiene tipo A en el contexto Γ "

$$\frac{\Gamma, x: A \vdash x: A}{\Gamma, x: A \vdash x: A} \text{ ax } \frac{\Gamma, x: A \vdash t: B}{\Gamma \vdash \lambda x^A. t: A \Rightarrow B} \Rightarrow_{I} \frac{\Gamma \vdash t: A \Rightarrow B}{\Gamma \vdash t: B} \Rightarrow_{E}$$

Lambda cálculo tipado

Una manera de clasificar términos estáticamente (es decir, sin "ejecutar el programa")

Términos
$$t ::= x \mid \lambda x^A.t \mid tt$$

Tipos $A ::= \tau \mid A \Rightarrow A$

ightharpoonup au es un tipo básico (como Int o Bool) $ightharpoonup A \Rightarrow A$ es el tipo de las funciones

Contexto: conjunto de variables tipadas $\Gamma = x_1 : A_1, \dots, x_n : A_n$ $\Gamma \vdash t : A$ "t tiene tipo A en el contexto Γ "

Reglas de tipado

$$\frac{\Gamma, x: A \vdash x: A}{\Gamma, x: A \vdash x: A} \text{ ax } \frac{\Gamma, x: A \vdash t: B}{\Gamma \vdash \lambda x^A. t: A \Rightarrow B} \Rightarrow_I \frac{\Gamma \vdash t: A \Rightarrow B}{\Gamma \vdash t: B} \Rightarrow_E$$

Eiemplo

$$\frac{\frac{\overline{x:\tau\Rightarrow\tau\vdash x:\tau\Rightarrow\tau}}{} \xrightarrow{ax}}{\frac{\vdash\lambda x^{\tau\Rightarrow\tau}.x:(\tau\Rightarrow\tau)\Rightarrow(\tau\Rightarrow\tau)}{\vdash(\lambda x^{\tau\Rightarrow\tau}.x)(\lambda x^{\tau}.x):\tau\Rightarrow\tau}} \Rightarrow_{I} \frac{\frac{\overline{x:\tau\vdash x:\tau}}{} \xrightarrow{x:\tau\vdash x:\tau}}{\vdash\lambda x^{\tau}.x:\tau\Rightarrow\tau} \Rightarrow_{I} \frac{}{\vdash\lambda x^{\tau}.x:\tau\Rightarrow\tau}$$

Verificación: $(\lambda x^{\tau \Rightarrow \tau}.x)(\lambda x^{\tau}.x)$ reescribe a $\lambda x^{\tau}.x$ (de tipo $\tau \Rightarrow \tau$)

La correspondencia de Curry-Howard

Lógica intuicionista mínima (sómo con implicación)

$$\frac{\Gamma, A \vdash A}{\Gamma, A \vdash A} \text{ ax } \frac{\Gamma, A \vdash B}{\Gamma \vdash A \Rightarrow B} \Rightarrow_{I} \frac{\Gamma \vdash A \Rightarrow B \quad \Gamma \vdash A}{\Gamma \vdash B} \Rightarrow_{E}$$

La correspondencia de Curry-Howard

Lógica intuicionista mínima (sómo con implicación)

$$\frac{\Gamma, A \vdash A}{\Gamma, A \vdash A} \text{ ax } \frac{\Gamma, A \vdash B}{\Gamma \vdash A \Rightarrow B} \Rightarrow_{I} \frac{\Gamma \vdash A \Rightarrow B \quad \Gamma \vdash A}{\Gamma \vdash B} \Rightarrow_{E}$$

¿Se parece a algo?

$$\frac{\Gamma, x : A \vdash x : A}{\Gamma, x : A \vdash x : A} \text{ ax } \frac{\Gamma, x : A \vdash t : B}{\Gamma \vdash \lambda x^{A}.t : A \Rightarrow B} \Rightarrow_{I} \frac{\Gamma \vdash t : A \Rightarrow B}{\Gamma \vdash tr : B} \Rightarrow_{E}$$

Los términos son la prueba de los predicados

Las pruebas... ¡son programas!

Haskell Curry & William Howard, entre 1934 y 1969

Lógicas más complejas corresponden a tipos más complejos.

Por ejemplo, la conjunción corresponde a los pares. La disjunción corresponde al "match", etc.

Las pruebas son programas...que nos dicen cómo construir la prueba

Sea
$$\Gamma := A \Rightarrow B, B \Rightarrow C, A$$

$$\frac{ \frac{ \overline{\Gamma \vdash A \Rightarrow B} \quad \overline{\Gamma \vdash A}}{ \Gamma \vdash B \Rightarrow C} \quad \overline{\Gamma \vdash A}}{ \frac{ \Gamma \vdash C}{A \Rightarrow B, B \Rightarrow C \vdash A \Rightarrow C}} \\
\frac{ A \Rightarrow B \vdash (B \Rightarrow C) \Rightarrow A \Rightarrow C}{ \vdash (A \Rightarrow B) \Rightarrow (B \Rightarrow C) \Rightarrow (A \Rightarrow C)}$$

Sea
$$\Gamma := x : A \Rightarrow B, y : B \Rightarrow C, z : A$$

$$\frac{ \overbrace{\Gamma \vdash y : B \Rightarrow C} \qquad \overline{\Gamma \vdash x : A \Rightarrow B} \qquad \overline{\Gamma \vdash z : A}}{\Gamma \vdash xz : B} \\
\underline{\Gamma \vdash y(xz)C} \\
x : A \Rightarrow B, y : B \Rightarrow C \vdash \lambda z^{A}.y(xz) : A \Rightarrow C} \\
x : A \Rightarrow B \vdash \lambda y^{B \Rightarrow C}.\lambda z^{A}.y(xz) : (B \Rightarrow C) \Rightarrow A \Rightarrow C} \\
\vdash \lambda x^{A \Rightarrow B}.\lambda y^{B \Rightarrow C}.\lambda z^{A}.y(xz) : (A \Rightarrow B) \Rightarrow (B \Rightarrow C) \Rightarrow (A \Rightarrow C)$$

Las pruebas son programas...que se pueden ejecutar para simplifacr las pruebas

$$\frac{\overline{A \Rightarrow A \vdash A \Rightarrow A}}{\vdash (A \Rightarrow A) \Rightarrow A \Rightarrow A} \quad \frac{\overline{A \vdash A}}{\vdash A \Rightarrow A}$$

$$\vdash A \Rightarrow A$$

$$\frac{\overline{x:A\Rightarrow A\vdash x:A\Rightarrow A}}{\vdash \lambda x^{A\Rightarrow A}.x:(A\Rightarrow A)\Rightarrow A\Rightarrow A} \frac{\overline{y:A\vdash y:A}}{\vdash \lambda y^{A}.y:A\Rightarrow A}$$
$$\vdash (\lambda x^{A\Rightarrow A}.x)\lambda y^{A}.y:A\Rightarrow A$$

Las pruebas son programas... que se pueden ejecutar para simplifacr las pruebas

$$\frac{\overline{A \Rightarrow A \vdash A \Rightarrow A}}{\vdash (A \Rightarrow A) \Rightarrow A \Rightarrow A} \quad \frac{\overline{A \vdash A}}{\vdash A \Rightarrow A}$$

$$\vdash A \Rightarrow A$$

$$\frac{\overline{x:A\Rightarrow A\vdash x:A\Rightarrow A}}{\vdash \lambda x^{A\Rightarrow A}.x:(A\Rightarrow A)\Rightarrow A\Rightarrow A} \quad \frac{\overline{y:A\vdash y:A}}{\vdash \lambda y^{A}.y:A\Rightarrow A} \longrightarrow \frac{\overline{y:A\vdash y:A}}{\vdash \lambda y^{A}.y:A\Rightarrow A}$$

$$\vdash (\lambda x^{A\Rightarrow A}.x)\lambda y^{A}.y:A\Rightarrow A$$

Agregando a Lambek con un ejemplo

Categoría **Set**: Los objetos son conjuntos, los morfismos son funciones.

$$\llbracket \tau \rrbracket = \tau$$
 $\llbracket A \Rightarrow B \rrbracket = \llbracket \llbracket A \rrbracket, \llbracket B \rrbracket \rrbracket$

Agregando a Lambek con un ejemplo

$$\llbracket \tau \rrbracket = \tau \qquad \qquad \llbracket A \Rightarrow B \rrbracket = \llbracket \llbracket A \rrbracket, \llbracket B \rrbracket \rrbracket$$

$$\left[\!\!\left[\overline{\Gamma, \mathbf{x} : A \vdash \mathbf{x} : A} \right. \stackrel{a\mathbf{x}}{\longrightarrow} A \stackrel{\mathsf{Id}}{\longrightarrow} A\right]\!\!$$

Agregando a Lambek con un ejemplo

$$\llbracket \tau \rrbracket = \tau \qquad \qquad \llbracket A \Rightarrow B \rrbracket = \llbracket \llbracket A \rrbracket, \llbracket B \rrbracket \rrbracket$$

Agregando a Lambek con un ejemplo

$$\llbracket \tau \rrbracket = \tau \qquad \qquad \llbracket A \Rightarrow B \rrbracket = \llbracket \llbracket A \rrbracket, \llbracket B \rrbracket \rrbracket$$

$$\begin{bmatrix}
\overline{\Gamma, x : A \vdash x : A} & \stackrel{ax}{A}
\end{bmatrix} = \Gamma \times A \xrightarrow{\pi_A} A \xrightarrow{\operatorname{Id}} A$$

$$\begin{bmatrix}
\underline{\Gamma, x : A \vdash t : B} \\
\overline{\Gamma \vdash \lambda x^A . t : A \Rightarrow B}
\end{bmatrix} \Rightarrow_I = \Gamma \xrightarrow{\eta^A} [A, \Gamma \times A] \xrightarrow{\operatorname{Id}, t} [A, B]$$

$$\begin{bmatrix}
\Gamma \vdash t : A \Rightarrow B \quad \Gamma \vdash r : A \Rightarrow_E
\end{bmatrix} = \Gamma \xrightarrow{\delta} \Gamma \times \Gamma \xrightarrow{t \times r} [A, B] \times A \xrightarrow{\varepsilon} B$$

Agregando a Lambek con un ejemplo

$$\llbracket \tau \rrbracket = \tau \qquad \qquad \llbracket A \Rightarrow B \rrbracket = \llbracket \llbracket A \rrbracket, \llbracket B \rrbracket \rrbracket$$

$$\begin{split} \left[\!\!\left[\overline{\Gamma, \mathbf{x} : A \vdash \mathbf{x} : A}\right.^{a \mathbf{x}}\right]\!\!\right] &= \Gamma \times A \xrightarrow{\pi_A} A \xrightarrow{\operatorname{Id}} A \\ \left[\!\!\left[\frac{\Gamma, \mathbf{x} : A \vdash t : B}{\Gamma \vdash \lambda \mathbf{x}^A . t : A \Rightarrow B}\right.^{\Rightarrow_I}\right]\!\!\right] &= \Gamma \xrightarrow{\eta^A} [A, \Gamma \times A] \xrightarrow{[\operatorname{Id}, t]} [A, B] \\ \left[\!\!\left[\frac{\Gamma \vdash t : A \Rightarrow B \quad \Gamma \vdash r : A}{\Gamma \vdash t : B}\right.^{\Rightarrow_E}\right]\!\!\right] &= \Gamma \xrightarrow{\delta} \Gamma \times \Gamma \xrightarrow{t \times r} [A, B] \times A \xrightarrow{\varepsilon} B \end{split}$$
 Teorema 1
$$\begin{bmatrix} \Gamma \vdash t : A \\ t \to r \end{bmatrix} \Longrightarrow [\!\![\Gamma \vdash t : A]\!\!] = [\!\![\Gamma \vdash r : A]\!\!]$$

Agregando a Lambek con un ejemplo

Categoría Set: Los objetos son conjuntos, los morfismos son funciones.

$$\llbracket \tau \rrbracket = \tau \qquad \qquad \llbracket A \Rightarrow B \rrbracket = \llbracket \llbracket A \rrbracket, \llbracket B \rrbracket \rrbracket$$

$$\begin{bmatrix}
\overline{\Gamma, x : A \vdash x : A} & \stackrel{ax}{\Rightarrow} I
\end{bmatrix} = \Gamma \times A \xrightarrow{\pi_A} A \xrightarrow{\operatorname{Id}} A$$

$$\begin{bmatrix}
\underline{\Gamma, x : A \vdash t : B} \\
\Gamma \vdash \lambda x^A \cdot t : A \Rightarrow B
\end{bmatrix} \Rightarrow_I
\end{bmatrix} = \Gamma \xrightarrow{\eta^A} [A, \Gamma \times A] \xrightarrow{\operatorname{Id}, t} [A, B]$$

$$\begin{bmatrix}
\underline{\Gamma \vdash t : A \Rightarrow B \quad \Gamma \vdash r : A} \\
\Gamma \vdash tr : B
\end{bmatrix} \Rightarrow_E
\end{bmatrix} = \Gamma \xrightarrow{\delta} \Gamma \times \Gamma \xrightarrow{t \times r} [A, B] \times A \xrightarrow{\varepsilon} B$$

Teorema 2: $\llbracket \Gamma \vdash t : A \rrbracket = \llbracket \Gamma \vdash r : A \rrbracket \implies t \sim r$.

¿Y eso porqué no es suficiente con lógica clásica?

La superposición

Principio de superposición: el estado de un sistema cuántico puede ser la superposición de diferentes estados contradictorios.

¿Y eso porqué no es suficiente con lógica clásica?

La superposición

Principio de superposición: el estado de un sistema cuántico puede ser la superposición de diferentes estados contradictorios.

Intento 1 de modelar la superposición de A y B

 $A \wedge B$

La propiedad A y la B se cumplen a la vez Pero de $A \wedge B$ puedo "extraer" A o B a piacere. No hay ninguna indeterminación.

¿Y eso porqué no es suficiente con lógica clásica?

La superposición

Principio de superposición: el estado de un sistema cuántico puede ser la superposición de diferentes estados contradictorios.

Intento 1 de modelar la superposición de A y B

 $A \wedge B$

La propiedad A y la B se cumplen a la vez Pero de $A \wedge B$ puedo "extraer" A o B a piacere. No hay ninguna indeterminación.

Intento 2 de modelar la superposición de A y B

 $A \vee B$

La propiedad A o la propiedad B se cumple, y yo no puedo saber a priori cual. Pero $A \lor B$ modela mi ignorancia sobre el sistema, no la superposición.

[Diaz-Caro & Dowek ICTAC 2021]

Conjunción

$$\frac{\Gamma \vdash A \quad \Gamma \vdash B}{\Gamma \vdash A \land B} \land_i$$

$$\frac{\Gamma \vdash A \land B \quad \Gamma, A \vdash C}{\Gamma \vdash C} \ \land_{e}^{1}$$

$$\frac{\Gamma \vdash A \land B \quad \Gamma, B \vdash C}{\Gamma \vdash C} \ \land_{e}^{2}$$

[Diaz-Caro & Dowek ICTAC 2021]

Conjunción

$$\frac{\Gamma \vdash A \quad \Gamma \vdash B}{\Gamma \vdash A \land B} \land_i$$

$$\frac{\Gamma \vdash A \land B \quad \Gamma, A \vdash C}{\Gamma \vdash C} \land_e^1$$

$$\frac{\Gamma \vdash A \land B \quad \Gamma, B \vdash C}{\Gamma \vdash C} \land_e^2$$

Disjunción

$$\frac{\Gamma \vdash A}{\Gamma \vdash A \lor B} \lor_i^1$$

$$\frac{\Gamma \vdash B}{\Gamma \vdash A \lor B} \lor_i^2$$

$$\frac{\Gamma \vdash A \lor B \quad \Gamma, A \vdash C \quad \Gamma, B \vdash C}{\Gamma \vdash C} \lor_{e}$$

[Diaz-Caro & Dowek ICTAC 2021]

Conjunción

$$\frac{\Gamma \vdash A \quad \Gamma \vdash B}{\Gamma \vdash A \land B} \land_i$$

$$\frac{\Gamma \vdash A \land B \quad \Gamma, A \vdash C}{\Gamma \vdash C} \land_e^1$$

$$\frac{\Gamma \vdash A \land B \quad \Gamma, B \vdash C}{\Gamma \vdash C} \land_{e}^{2}$$

Disjunción

$$\frac{\Gamma \vdash A}{\Gamma \vdash A \lor B} \lor_i^1$$

$$\frac{\Gamma \vdash B}{\Gamma \vdash A \lor B} \lor_i^2$$

$$\frac{\Gamma \vdash A \lor B \quad \Gamma, A \vdash C \quad \Gamma, B \vdash C}{\Gamma \vdash C} \lor_{e}$$

Superposición

$$\frac{\Gamma \vdash A \quad \Gamma \vdash B}{\Gamma \vdash A \odot B} \odot_i$$

$$\frac{\Gamma \vdash A \odot B \quad \Gamma, A \vdash C \quad \Gamma, B \vdash C}{\Gamma \vdash C} \odot_{e}$$

[Diaz-Caro & Dowek ICTAC 2021]

Conjunción

$$\frac{\Gamma \vdash a : A \quad \Gamma \vdash b : B}{\Gamma \vdash \langle a, b \rangle : A \land B} \land_i$$

$$\frac{\vdash t : A \land B \quad \mathsf{I}, x : A \vdash r : C}{\Gamma \vdash \delta^{\mathsf{1}}_{\land}(t, x.r) : C} \land^{\mathsf{1}}_{e}$$
$$\delta^{\mathsf{1}}_{\land}(\langle a, b \rangle, x.r) \longrightarrow (x := a)r$$

$$\frac{\Gamma \vdash a : A \quad \Gamma \vdash b : B}{\Gamma \vdash \langle a, b \rangle : A \land B} \land_{i} \quad \frac{\Gamma \vdash t : A \land B \quad \Gamma, x : A \vdash r : C}{\Gamma \vdash \delta^{1}_{\land}(t, x.r) : C} \land_{e}^{1} \quad \frac{\Gamma \vdash t : A \land B \quad \Gamma, y : B \vdash s : C}{\Gamma \vdash \delta^{2}_{\land}(t, y.s) : C} \land_{e}^{2}$$

[Diaz-Caro & Dowek ICTAC 2021]

Conjunción

$$\frac{\Gamma \vdash a : A \quad \Gamma \vdash b : B}{\Gamma \vdash \langle a, b \rangle : A \land B} \land_{i} \quad \frac{\Gamma \vdash t : A \land B \quad \Gamma, x : A \vdash r : C}{\Gamma \vdash \delta_{\land}^{1}(t, x.r) : C} \land_{e}^{1} \quad \frac{\Gamma \vdash t : A \land B \quad \Gamma, y : B \vdash s : C}{\Gamma \vdash \delta_{\land}^{2}(t, y.s) : C} \land_{e}^{2} \quad \delta_{\land}^{1}(\langle a, b \rangle, x.r) \longrightarrow (x := a)r$$

Disjunción

$$\frac{\Gamma \vdash a : A}{\Gamma \vdash inl(a) : A \lor B} \lor_{i}^{1} \quad \frac{\Gamma \vdash b : B}{\Gamma \vdash inr(b) : A \lor B} \lor_{i}^{2} \quad \frac{\Gamma \vdash t : A \lor B \quad \Gamma, x : A \vdash r : C \quad \Gamma, y : B \vdash s : C}{\Gamma \vdash \delta_{\lor}(t, x.r, y.s) : C} \lor_{e}$$
$$\delta_{\lor}(inl(a), x.r, y.s) \longrightarrow (x := a)r$$

[Diaz-Caro & Dowek ICTAC 2021]

Conjunción

$$\frac{\Gamma \vdash a : A \quad \Gamma \vdash b : B}{\Gamma \vdash \langle a, b \rangle : A \land B} \land_{i} \qquad \frac{\Gamma \vdash t : A \land B \quad \Gamma, x : A \vdash r : C}{\Gamma \vdash \delta^{1}_{\land}(t, x.r) : C} \land^{1}_{e} \qquad \frac{\Gamma \vdash t : A \land B \quad \Gamma, y : B \vdash s : C}{\Gamma \vdash \delta^{2}_{\land}(t, y.s) : C} \land^{2}_{e}$$

$$\delta^{1}_{\land}(\langle a, b \rangle, x.r) \longrightarrow (x := a)r$$

Disjunción

$$\frac{\Gamma \vdash a : A}{\Gamma \vdash inl(a) : A \lor B} \lor_{i}^{1} \frac{\Gamma \vdash b : B}{\Gamma \vdash inr(b) : A \lor B} \lor_{i}^{2} \frac{\Gamma \vdash t : A \lor B \quad \Gamma, x : A \vdash r : C \quad \Gamma, y : B \vdash s : C}{\Gamma \vdash \delta_{\lor}(t, x.r, y.s) : C} \lor_{\epsilon} \delta_{\lor}(inl(a), x.r, y.s) \longrightarrow (x := a)r$$

Superposición

$$\frac{\Gamma \vdash a : A \quad \Gamma \vdash b : B}{\Gamma \vdash [a,b] : A \odot B} \odot_{i} \qquad \frac{\Gamma \vdash t : A \odot B \quad \Gamma, x : A \vdash r : C \quad \Gamma, y : B \vdash s : C}{\Gamma \vdash \delta_{\odot}(t, x, r, y, s) : C} \odot_{e}$$

$$\delta_{\odot}([a,b], x, r, y, s) \longrightarrow (x := a)r \qquad \delta_{\odot}([a,b], x, r, y, s) \longrightarrow (y := b)s$$

⊙ en el corazón de los lenguajes de programación cuánticos

Tipo básico \top con término \star

$$\overline{\Gamma \vdash \star : \top} \; \top_i$$

Bit:
$$\top \vee \top$$
 $0 = inl(\star)$ $1 = inr(\star)$

If b Then r Else s
$$\delta_{\vee}(b, x.r, y.s)$$

⊙ en el corazón de los lenguajes de programación cuánticos

Tipo básico \top con término \star

$$\overline{\Gamma \vdash \star : \top} \; \top_i$$

Bit:
$$\top \lor \top$$
 $0 = inl(\star)$ $1 = inr(\star)$

If b Then r Else s
$$\delta_{\vee}(b, x.r, y.s)$$

Tipo básico \top con términos $\alpha.\star$, con $\alpha \in \mathcal{S}$

$$\overline{\Gamma \vdash \alpha . \star : \top} \; \top_i(\alpha)$$

Qubit:
$$\top \odot \top$$
 $\binom{\alpha}{\beta} = [\alpha.\star, \beta.\star]$

Medición de un qubit (asociando las probabilidades correspondientes) $\delta_{\odot}(q, x.r, y.s)$

⊙ en el corazón de los lenguajes de programación cuánticos

Tipo básico \top con término \star

$$\frac{}{\Gamma \vdash \star : \top} \; \top_{i}$$

Bit:
$$\top \lor \top$$
 $0 = inl(\star)$ $1 = inr(\star)$

If b Then r Else s $\delta_{\vee}(b, x.r, y.s)$

Tipo básico \top con términos $\alpha.\star$, con $\alpha \in \mathcal{S}$

$$\overline{\Gamma \vdash \alpha . \star : \top} \; \top_i(\alpha)$$

Qubit:
$$\top \odot \top$$
 $\binom{\alpha}{\beta} = [\alpha.\star, \beta.\star]$

Medición de un qubit (asociando las probabilidades correspondientes) $\delta_{\odot}(q, x.r, y.s)$

Si agregamos las eliminaciones de la conjunción...

$$\frac{\Gamma \vdash t : A \odot B \quad \Gamma, x : A \vdash r : C}{\Gamma \vdash \delta_{\circ}^{1}(t, x, r) : C} \odot_{e}^{1}$$

$$\frac{\Gamma \vdash t : A \odot B \quad \Gamma, y : B \vdash s : C}{\Gamma \vdash \delta_{\bigcirc}^{2}(t, y, s) : C} \odot_{e}^{2}$$

podemos codificar matrices:

$$\left(\begin{smallmatrix} a & b \\ c & d \end{smallmatrix}\right) = \lambda x. \left(\delta^1_{\odot}(x, y.\delta_{\top}(y, [a.\star, b.\star])) + \delta^2_{\odot}(x, z.\delta_{\top}(z, [c.\star, d.\star]))\right)$$

(ok, queda para otra charla que les cuente sobre ese +...o pueden bajar el paper)

Resumiendo

- ► Introdujimos un nuevo operador lógico, ⊙, que modela la superposición. Tiene la introducción de la conjunción y la eliminación de la disjunción
- ▶ Diseñamos un lenguaje de progamación cuántico, con el operador lógico ⊙

Resumiendo

- ► Introdujimos un nuevo operador lógico, ⊙, que modela la superposición. Tiene la introducción de la conjunción y la eliminación de la disjunción
- ▶ Diseñamos un lenguaje de progamación cuántico, con el operador lógico ⊙

Lo que no conté

- ► Mostramos la relación de un fragmento de este cálculo con la lógica lineal intuicionista ([Díaz-Caro & Dowek, FSCD 2022])
- Dimos una interpretación categórica para ese fragmento ([Díaz-Caro & Malherbe, arXiv:2205.02142, 2022])
- Seguimos estudiando esta lógica, y la relación con otras lógicas conocidas.